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Summary

A strength assessment model is proposed for predicting the working time of wire ropes 
that have deteriorated. The distributed losses of the sectional metallic area and local 
wire breaks as measured by a magnetic flux detector are used as input data for the 
strength evaluation.  A residual  safety index for  the damaged rope is treated as the 
parameter for working capacity.  The following rope inspection and the corresponding 
strength state relative to the empirical permissible level are predicted. Several examples 
of the forecasting procedure are presented.

1     Introduction

Strict  requirements  for  the  reliable  operation  of  steel  wire  ropes  are  accepted  for 
practically all  load-lifting machines. Regular periodic inspections by NDT instruments 
enable the rope condition to be monitored while the rope is in service [2]. Two main 
features of deterioration are usually registered by a magnetic flux detector: distributed 
losses of the metallic area (LMA) and localised faults (LF), such as wire breaks. These 
data correlate to some extent with the endurance of the degraded rope, but they do not 
indicate its strength in the quantitative sense. Therefore they must be interpreted using 
an appropriate mechanical model to obtain the generalised parameter that specifies the 
residual strength of the rope [3]. This parameter may be used as a diagnostic indicator 
for predicting the technical state of the rope up to the following inspection. The residual 
strength forecast gives warning of the risk of breakage, especially when approaching 
the permissible strength level during the operating history. 

2     Assessment of rope residual strength

The residual strength of the rope is estimated by means of the criterion for the stress 
state of the wire.  This gives a stress safety factor of  n , which is treated as a ratio 

σ σ= /un  of the material ultimate stress σ u  and von Mises working stress σ  that is at 
its maximum around the wires. Relative rope strength loss is defined by the parameter 
χ = − %1 /n n ,  where  %n  and  n  are the stress safety  factors of  damaged and non-
damaged rope, respectively, under the same working conditions.

The input parameters for the mechanical strength model – metallic cross-section loss 
∆ A  and number of wire breaks B  – do not account for the distribution of faults over the 
wires,  and  are  in  general  of  a  random  nature.  Thus  statistical  modelling  of  wear 
locations  in  the  rope  cross-section  has  been  performed  and  the  residual  strength 



calculated as a probabilistic assessment. The details of the procedure and the features 
of the mechanical model are described in [3, 4].

In the absence of a true account of the combined effect of local and distributed faults on 
rope strength, the statistical assessments of the decrease in strength due to metallic-
section loss χ ∆ A  and wire breaks χ B  are determined independently. The total strength 
loss  χ ( , )x t  in the rope cross-section with the longitudinal co-ordinate  x  at operating 
time  t  is  estimated by superposition χ χ χ∆= +( , ) ( , ) ( , )A Bx t x t x t .  The residual  strength 
parameter η χ= −( , ) 1 ( , )x t x t  is defined as a diagnostic index for predicting the technical 
state of the rope during operation. 

The theoretical  strength model  has been verified  by tensile  experiments  with  ropes 
containing artificial wire breaks that were made initially. Initial breaks ranging from 4 to 
20 in number were distributed more or less uniformly throughout the outer strands in the 
same  section  of  each  rope  specimen.  The  failure  load  qP  was  detected  for  the 
specimen with q  initial  breaks when the first  rupture had occurred. The tensile test 
arrangement and one of the partly ruptured specimens are shown in Figure 1.  The 
typical load-strain diagram of the whole step-like failure process is plotted in Figure 2. 

Figure 1:  Tensile test arrangement and broken specimen

The  strength  of  the  defective  specimen  has  been  estimated  using  the  parameter 
η =, 0/q test qP P , where 0P  is the failure load for a non-defective rope. The empirical value 
η ,q test  was compared with the theoretical assessment η ,q theory , evaluated for a rope with 
the proper q  initial wire breaks according to the model [3].



Figure 2:  Load-strain diagram of the failure process

Test and calculation results (in percentages) are presented in Figure 3 for  the rope 
PYTHON 8xK19S-PWRC(K) 2160 B sZ ISO 17893:2004 with diameter D 8 mm. Three 
specimens were tested for each number q  of artificial breaks. The failure loads qP  have 

been correlated to the certified actual breaking load =0 72.56P  kN. 

Figure  3:  Comparison  of  theoretical  and  experimental  results  for  ropes  with 
                  artificial breaks
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The theoretical line is not straight in Figure 3 because some of wire breaks (4, 8 etc) are 

distributed symmetrically around the eight strands and others (6, 10 etc) – not. This 

circumstance affects the strength assessment. 

3     Principles for predicting rope strength 

The parameter  η ( , )x t of the residual strength of a damaged rope is a non-increasing 
function of the operating time t  – i.e.  η η+ ∆ Ј( , ) ( , )x t t x t  when ∆ > 0t . The safe state 
condition of the rope appears as

                                                η η ∗іmin ( , )
x

x t  .                                                    (1)

The permissible  strength  level  η ∗  η ∗Ј Ј(0 1)  is  an  empirical  value  estimated  from 
specified  rope  lifetime  experiments,  or  it  may  be  set  with  regard  to  the  existing 
normative safety requirements.  At  the beginning of  the service life = 0t t  (for  a new 
rope) η η ∗>0( , )x t .  An upset  in  condition (1)  signifies rope failure.  The LMA and LF 
charts are detected along the tested section of the rope with magnetic NDT inspections 
at  the  operating times  =( 0,1,2,...)jt j . Decoded records  serve  as  the  input  data for 
calculating  spaced  strength  estimates η ( , )jx t .  The  corresponding  minimum  values 
η η= min ( , )j jx

x t   are the parameters for the prediction algorithm.               

Predicting  the  degrading  of  the  residual  strength  of  a  rope requires  answering  two 
questions:

1) Whether to stop or to continue the work of the rope at the achieved operating time, 
factoring in all previous inspection history?
2)  If  the decision  is  to  continue,  at  what  operating  time should  the next  testing be 
conducted and what value for residual strength is then expected?

The prediction  algorithm at  a  given  operating  time  Jt  is  similar  to  a  least  squares 
extrapolation ( )f t  of the m  points η η− −( 1),...,J m J  evaluated from the NDT data of the last 
m   inspections. The rope inspector sets the intervals between several initial tests to 
start the procedure.

The  simplest  choice  –  linear  approximation  = +1 2 1 2( , , )f t a a a a t  for  = 3m  points 
η η η− −2 1, ,J J J  – is shown in Figure 4. The coefficients  1 2,a a  are defined by the least 
squares criterion:

                                      ( )ρ η− + − +
=

й щ− →л ые
1 2

23

3 1 2 3 ,
1

, , mini J i J i a a
i

f t a a .

Here  ρ ε= >1/ 0i i  are  the  weight  factors,  given  the  various  inaccuracies  ε i  of  the 
estimates η − +3J i .



The step ∆ Jt  for the next rope diagnostic time (or discard time) + = + ∆1J J Jt t t  depends 
on the relationship between the previous step − −∆ = −1 1J J Jt t t  and the interval ∗ ∗∆ = − Jt t t  
when the fitting curve ( )f t  reaches the permissible strength level η ∗ . If  

−∗∆ > ∆ 1Jt t , then 

the  prediction  step  is  equal  to  −∆ = ∆ 1J Jt t  and  the  expected  strength  estimate  is 
η + ≈ + ∆1 ( )J J Jf t t .

Figure 4:  Approximation of residual strength estimates

The failures progressively accumulated in the strands of a rope bring about avalanche-
like rupture. Therefore the prediction path must approach the permissible level η ∗  very 
carefully. When  −∗∆ < ∆ 1Jt t  the prediction step  ∆ Jt  is set considering the degradation 
rate of  the  rope, roughly  estimated  by  the  slope  ( )η η∗ ∗= − ∆/Js t .  If 

( )η> >2 ( )J Js a f t  the step ∆ Jt  is assumed to be equal to ( )α η ∗∆ = − ( ) /J Jt f t s . The 
factor α  lies within the range  αЈ Ј0.5 1 and in this way regulates the prediction risk 
near the permissible strength η ∗ . The expected strength value for a new inspection at 

the predicted operating time + 1Jt  is marked in Figure 5a as a light circle. 

Provided that  ( )η< <2 ( )J Js a f t  the half step ∗∆ = ∆0.5Jt t  is assigned and a standby 

approximation  = +% % %
1 2( )f t a a t  with  slope modulus  Ј Ј%

2 2s a a  is used. The expected 

strength for a new inspection is estimated using the value η + ≈ + ∆%
1( ) ( )J J Jt f t t  (marked as 

a light circle in Figure 5b).

                           

    

 (a)                                                              (b)

Figure 5: Variants of the predicted inspection steps and rope strengths (light circles)
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In any case the theoretical prediction must be treated only as a proposal for the rope 
inspector, who is the only person to make the final decision concerning the technical 
state of the rope and what future actions should be taken. 

4     Examples

The ropes PYTHON 8xK19S + PWRC(K) with diameters D8 and D11 were periodically 
tested  by  the  magnetic  device  INTROS along  the  length  10X =  m  during  lifetime 
experiments under the state similar to the pure tension when twisting is restricted. Some 
representative LMA and LF charts, respectively, are shown in Figures 6 and 7.

Figure 6:     Periodic LMA charts for rope PYTHON D8

Figure 7:     Periodic LF charts for rope PYTHON D8
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The number of loading cycles was considered as the operating time t . A calculation of 
the residual strength was made with the proposition that the bending deformations at 
some parts of the ropes are negligible. Strength losses  ( )χ ∆ ,A jx t  and  χ ( , )B jx t  have 

been evaluated at  Ј Ј0 x X  for each time jt  by averaging over 200 samples with an 
assessment reliability of 0.997. 

Figure 8 presents the strength index distributions along the rope PYTHON D8 segment 
Ј Ј0 x X  as  it  changes  with  inspection  dates\cycles.  The  corresponding  minimum 

values  (marked  as  circles)  are  the  prediction  parameters  η η= min ( , )j jx
x t .  On  the 

practically  uniform  background  level  they  become  more  distinguishable  at  later 
deterioration phases because of the progressive accumulation of  wire  breaks. Local 
faults indicate the intervals where rope failure develops and will probably occur.

Figure  8:    Time-quantified  strength  index  distributions  along  the  rope  PYTHON 
                     D8 segment
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Figure  9  demonstrates  the  changes  in  both  the  minimum  estimates  η j  and  the 
prediction path  ( )jf t  (marked in green) as functions of the operating cycles  jt  for the 
test history of the rope. The permissible level  η ∗  has been set for the situation just 
before failure of the rope when the measured LMA/LF magnitudes start  to increase 
significantly. The assumed value η ∗ = 92%  correlates with the normative discard criteria 
[1]. In general, this parameter has a stochastic nature. It must be detected carefully from 

the specific deterioration experiments. The integral strength estimate η− т1 ( , )j
X

X x t dx  that 

lies higher describes the degradation caused mainly by development of the distributed 
faults. 

 

Figure 9:     Changing of the rope strength estimates and predicted values (green) for 
                      progressively deteriorated rope PYTHON D8

Figure 10 presents similar results for rope PYTHON D11 with an empirical permissible 
level of 93%. Some degradation instability may be seen in initial inspections.
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Figure 10:     Changing of the rope strength estimates and predicted values (green) for 
                       progressively deteriorated rope PYTHON D11

Note that both examples are only apt illustrations of the forecasting procedure, because 
in each of them the prediction path  ( )jf t  appears after all test history  jη  has been 
generated.

5     Conclusions

The strength assessment model using NDT data estimated accurately the strength level 
of  the tested  ropes.  In  practical  use the  predicted successive  diagnostic  times and 
strength estimates give the NDT operator further information that will help in making a 
valid decision on testing policy.

The proposed approach increases the reliability of rope inspection because the 
successive test dates are dependent upon the condition of the rope.
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